Validation of CHIRPS estimated precipitation in a semi-arid region of Argentina
Keywords:
CHIRPS, gridded data, validation, precipitationAbstract
Gridded data of precipitation are a valuable tool in scarce-observational data contexts. Validation through statistical analysis is essential for its use. This work aims to validate the Climate Hazards Infrared Precipitation with Stations (CHIRPS) database for the southwest of Buenos Aires province (1990-2020). This dataset has adequate spatio-temporal coverage to study rainfall variability. For validation purposes, Pearson's correlation coefficient (r-Pearson), mean absolute error (mae), root mean squared error (rmse) and percent bias (pbias) were applied in the R environment using the hydroGOF package. CHIRPS shows a correlation between 0.68 and 0.84 for observed data on both monthly and annual scales. It also tends to overestimate rainfall between 2 and 4%, except in the northwestern sector, where it underestimates between 4 and 11%. It is concluded that CHIRPS is applicable for rainfall variability studies in the analyzed region, where the lack of data is a recurrent problem, considering the spatial errors detected.
Downloads
References
Aliaga, V. S., Ferrelli, F. & Piccolo, M. C. (2017). Regionalization of climate over the Argentine Pampas. International journal of climatology, 37, 1237-1247. https://doi.org/10.1002/joc.5079
Alsilibe, F., Bene, K., Bilal, G., Alghafli, K. & Shi, X. (2023). Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria. Remote Sensing, 15 (7), 1778. https://doi.org/10.1002/qj.3244
Anjum, M. N., Irfan, M., Waseem, M., Leta, M. K., Niazi, U. M., ur Rahman, S., Ghanim, A., Ahsan Mukhtar, M. & Nadeem, M. U. (2022). Assessment of PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0 rainfall products over a semi-arid subtropical climatic region. Water, 14(2), 147. https://doi.org/10.3390/w14020147
Arregocés, H. A., Rojano, R. & Pérez, J. (2023). Validation of the CHIRPS dataset in a coastal region with extensive plains and complex topography. Case Studies in Chemical and Environmental Engineering, 8. https://doi.org/10.1016/j.cscee.2023.100452
Ávila Parra, K. & Martín Vide, J. (2013). Análisis estadístico de los eventos extremos de precipitación. Cuadernos Geográficos de la Universidad de Granada, 52(1), 69-83. https://dialnet.unirioja.es/servlet/articulo?codigo=4298593
Bai, L., Shi, C., Li, L., Yang, Y. & Wu, J. (2018). Accuracy of CHIRPS Satellite-Rainfall Products over Mainland China. Remote Sensing, 10 (3), 362. https://doi.org/10.3390/rs10030362
Barrucand, M. G. (2008). Extremos de temperaturas en Argentina: cambios observados en la variabilidad espacio-temporal y su relación con otras características del sistema climático. http://hdl.handle.net/20.500.12110/tesis_n4221_Barrucand
Bezerra, B. G., Silva, L. L., Santos e Silva, C. M. & de Carvalho, G. G. (2019). Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Theoretical and Applied Climatology, 135, 565-576. https://doi.org/10.1007/s00704-018-2396-6
Campo, A., Diez, P. & Capelli de Steffens, A. (2004). El clima del suroeste bonaerense. EdiUNS. Bahía Blanca, Argentina
Campo, A.; Ramos, B. & Zapperi, P. (2009). Análisis de las variaciones anuales de precipitación en el suroeste bonaerense, Argentina. 1–12. http://observatoriogeograficoamericalatina.org.mx/egal12/Procesosambientales/Climatologia/16.pdf
Casado, A. & Picone, N. (2018). Aplicabilidad de los datos grillados para el análisis espaciotemporal de las precipitaciones, provincia de Buenos Aires (Argentina). Párrafos Geográficos, 17(1), 46-62. http://igeopat.org/parrafosgeograficos/images/RevistasPG/2018_17_1/29-3.pdf
Casado, A. L. & Campo, A. M. (2019). Extremos hidroclimáticos y recursos hídricos: estado de conocimiento en el suroeste bonaerense, Argentina. Cuadernos Geográficos, 58(1), 6-26. http://dx.doi.org/10.30827/cuadgeo.v58i1.6751
Cavalcante, R. B. L., da Silva Ferreira, D. B., Pontes, P. R. M., Tedeschi, R. G., da Costa, C. P. W. & de Souza, E. B. (2020). Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmospheric Research, 238, 104879. https://doi.org/10.1016/j.atmosres.2020.104879
de Moraes Cordeiro, A. L. & Blanco, C. J. C. (2021). Assessment of satellite products for filling rainfall data gaps in the Amazon region. Natural Resource Modeling, 34(2), e12298. https://doi.org/10.1111/nrm.12298
Fournier, F. (1960). Climat et erosion; la relation entre l’erosion du sol par l’eau et les precipitations atmospheriques. Paris: Presses universitaires de France.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A. & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21. https://doi.org/10.1038/sdata.2015.66
Gentili, J. O. & Gil, V. (2013). Variabilidad temporal de las precipitaciones en vertientes opuestas del Sistema de Ventania, Buenos Aires, Argentina. Revista Universitaria de Geografía, 22(2), 147-166. https://www.redalyc.org/pdf/3832/383239184008.pdf
Gil, V., Gentili, J., Campo, A. M., Jelinski, G. & Crisafulli, M. (2016). Evaluación del peligro potencial de crecidas en cuencas serranas. Sistema de Ventania, provincia de Buenos Aires. III Encuentro de Investigadores en Formación en Recursos Hídricos, Ezeiza, Argentina. https://www.ina.gov.ar/ifrh-2016/trabajos/IFRH_2016_paper_133.pdf
Gusmerotti, L. A., Posse, G., Oricchio, P. A., Rivadeneira, S. T. & Di Bella, C. M. (2023). Evaluation of Satellite-Based Precipitation Estimates and a Correction Methodology Through Weather Stations in Córdoba (Argentina). https://dx.doi.org/10.2139/ssrn.4374156
Hobouchian, M. P., Salio, P., Skabar, Y. G., Vila, D. & Garreaud, R. (2017). Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmospheric Research, 190, 43-54. https://doi.org/10.1016/j.atmosres.2017.02.006
Lovino, M. Á. (2015). Impacto ambiental de la variabilidad climática y los eventos extremos en la provincia de Santa Fe, en el contexto del cambio climático. http://hdl.handle.net/11185/707
Lúgaro, T. (2022). Caracterización climática de los vientos en Argentina a partir de datos observados y satelitales. https://anemoi.net.ar/static/img/Tesis_Lugaro.pdf
Marianetti, G. & Rivera, J. (2021). Riesgos asociados a eventos de precipitaciones intensas en la región oeste del Gran Mendoza, Argentina. ICU: Investigación, Ciencia y Universidad, 5(6), 31-42. https://doi.org/10.59872/icu.v5i6.369
Martín‐Vide, J. (2004). Spatial distribution of a daily precipitation concentration index in peninsular Spain. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(8), 959-971. https://doi.org/10.1002/joc.1030
Medina, F. D., Zossi, B. S., Bossolasco, A. & Elias, A. G. (2023). Performance of CHIRPS dataset for monthly and annual rainfall-indices in Northern Argentina. Atmospheric Research, 283, 106545. https://doi.org/10.1016/j.atmosres.2022.106545
Mianabadi, A. (2023). Evaluation of long-term satellite-based precipitation products for developing intensity-frequency (IF) curves of daily precipitation. Atmospheric Research, 286, 106667. https://doi.org/10.1016/j.atmosres.2023.106667
Olmo, M. E. (2023). Cambios futuros de la precipitación extrema en el sudeste de Sudamérica: modelado climático estadístico regional y patrones de circulación sinóptica. http://hdl.handle.net/20.500.12110/tesis_n7282_Olmo
Ombadi, M., Nguyen, P., Sorooshian, S. & Hsu, K. L. (2018). Developing intensity‐duration‐frequency (IDF) curves from satellite‐based precipitation: Methodology and evaluation. Water Resources Research, 54(10), 7752-7766. https://doi.org/10.1029/2018WR022929
Paredes-Trejo, F. J., Barbosa, H. A. & Kumar, T. L. (2017). Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. Journal of arid environments, 139, 26-40. https://doi.org/10.1016/j.jaridenv.2016.12.009
Prakash, S. (2019). Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. Journal of hydrology, 571, 50-59. https://doi.org/10.1016/j.jhydrol.2019.01.036
Rivera, J. A., Marianetti, G. & Hinrichs, S. (2018). Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmospheric Research, 213, 437-449. https://doi.org/10.1016/j.atmosres.2018.06.023
Salih, W., Epule, T. E., EL Khalki, E. L., Ouatiki, H., Erraki, S., Achli, S. & Chehbouni, A. (2023). A comprehensive assessment of satellite precipitation products over a semi-arid region: focus on extreme events. Natural Hazards, 1-29. https://doi.org/10.1007/s11069-023-06317-y
Saucedo, G. I., Kurtz, D. B. & Contreras, F. I. (2023). Validación de precipitaciones estimadas mediante satélites para dos estaciones de la provincia de Corrientes (República Argentina). Contribuciones Científicas, 35(1), 46-53. https://gaea.org.ar/contribuciones/CC_GAEA_35.pdf#page=47
Serrano‐Notivoli, R., Beguería, S., Saz, M. Á. & De Luis, M. (2018). Recent trends reveal decreasing intensity of daily precipitation in Spain. International Journal of Climatology, 38(11), 4211-4224. https://doi.org/10.1002/joc.5562
Volonté, A. (2017). Geomorfología fluvial aplicada al peligro de crecidas: cuenca del arroyo San Bernardo, sistema de Ventania, Argentina. http://repositoriodigital.uns.edu.ar/handle/123456789/3453
Wischmeier, W. H. (1959). A rainfall erosion index for a universal soil‐loss equation. Soil Science Society of America Journal, 23(3), 246-249. https://doi.org/10.2136/sssaj1959.03615995002300030027x
Xu, W., Zou, Y., Zhang, G. & Linderman, M. (2015). A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province, China. International Journal of Climatology, 35(10), 2898-2907. https://doi.org/10.1002/joc.4180
Zambrano, F., Wardlow, B., Tadesse, T., Lillo-Saavedra, M. & Lagos, O. (2017). Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmospheric Research, 186, 26-42. https://doi.org/10.1016/j.atmosres.2016.11.006
Zambrano-Bigiarini, M. (2022). Package hydroGOF. https://cran.r-project.org/web/packages/hydroGOF/index.html
Published
How to Cite
Issue
Section
ARK
License
Copyright (c) 2024 Boletín GeográficoTransfer of rights and data processing
The acceptance of an article for publication in the Journal Geographic Bulletin implies the cession of the rights of printing and reproduction, by any means and means, of the author in favor of the Department of Geography of the National University of Comahue, which will not reject any request reasonable for the authors to obtain permission to reproduce their contributions. The total or partial reproduction of the works published in the Geographic Bulletin must be done citing the origin, otherwise, the copyright is violated.
Likewise, it is understood that the concepts and opinions expressed in each work are the sole responsibility of the author, without being responsible or in solidarity, necessarily, neither the editorial staff nor the editorial staff.
It is the responsibility of the authors to be able to provide interested readers with copies of the raw data, procedure manuals, scores and, in general, relevant experimental material.
Likewise, the Management of the journal guarantees the appropriate treatment of personal data
COPYRIGHT TRANSFER FORM