Validación de precipitación estimada por CHIRPS en una región semiárida de Argentina
Palabras clave:
CHIRPS, datos grillados, validación, precipitacionesResumen
Los datos grillados de precipitación son una herramienta valiosa en contextos de escasez de datos observacionales. Para su uso es fundamental la validación a través de análisis estadísticos. El objetivo del trabajo es validar la base de datos CHIRPS (Climate Hazards Group InfraRed Precipitation with Station Data, por sus siglas en inglés) para el suroeste de la provincia de Buenos Aires (1990-2020). Este conjunto de datos posee una adecuada cobertura espacio-temporal para estudiar la variabilidad de las precipitaciones. Para la validación, se aplicaron el coeficiente de correlación de Pearson (r-Pearson), el error absoluto medio (mae), el error cuadrático medio (rmse) y el porcentaje de sesgo (pbias), en entorno R utilizando el paquete hydroGOF. CHIRPS presentó correlaciones de entre 0.68 y 0.84 respecto a los datos observados, tanto a escala mensual como anual. Asimismo, se observó una tendencia a sobreestimar las precipitaciones entre 2 y 4%, excepto en el sector noroeste, donde se subestimaron entre 4 y 11%. Se concluye que CHIRPS es aplicable para estudios de variabilidad de las precipitaciones en la región analizada, donde la falta de datos se presenta como un problema recurrente, teniendo en cuenta los errores espaciales detectados.
Descargas
Citas
Aliaga, V. S., Ferrelli, F. & Piccolo, M. C. (2017). Regionalization of climate over the Argentine Pampas. International journal of climatology, 37, 1237-1247. https://doi.org/10.1002/joc.5079
Alsilibe, F., Bene, K., Bilal, G., Alghafli, K. & Shi, X. (2023). Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria. Remote Sensing, 15 (7), 1778. https://doi.org/10.1002/qj.3244
Anjum, M. N., Irfan, M., Waseem, M., Leta, M. K., Niazi, U. M., ur Rahman, S., Ghanim, A., Ahsan Mukhtar, M. & Nadeem, M. U. (2022). Assessment of PERSIANN-CCS, PERSIANN-CDR, SM2RAIN-ASCAT, and CHIRPS-2.0 rainfall products over a semi-arid subtropical climatic region. Water, 14(2), 147. https://doi.org/10.3390/w14020147
Arregocés, H. A., Rojano, R. & Pérez, J. (2023). Validation of the CHIRPS dataset in a coastal region with extensive plains and complex topography. Case Studies in Chemical and Environmental Engineering, 8. https://doi.org/10.1016/j.cscee.2023.100452
Ávila Parra, K. & Martín Vide, J. (2013). Análisis estadístico de los eventos extremos de precipitación. Cuadernos Geográficos de la Universidad de Granada, 52(1), 69-83. https://dialnet.unirioja.es/servlet/articulo?codigo=4298593
Bai, L., Shi, C., Li, L., Yang, Y. & Wu, J. (2018). Accuracy of CHIRPS Satellite-Rainfall Products over Mainland China. Remote Sensing, 10 (3), 362. https://doi.org/10.3390/rs10030362
Barrucand, M. G. (2008). Extremos de temperaturas en Argentina: cambios observados en la variabilidad espacio-temporal y su relación con otras características del sistema climático. http://hdl.handle.net/20.500.12110/tesis_n4221_Barrucand
Bezerra, B. G., Silva, L. L., Santos e Silva, C. M. & de Carvalho, G. G. (2019). Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Theoretical and Applied Climatology, 135, 565-576. https://doi.org/10.1007/s00704-018-2396-6
Campo, A., Diez, P. & Capelli de Steffens, A. (2004). El clima del suroeste bonaerense. EdiUNS. Bahía Blanca, Argentina
Campo, A.; Ramos, B. & Zapperi, P. (2009). Análisis de las variaciones anuales de precipitación en el suroeste bonaerense, Argentina. 1–12. http://observatoriogeograficoamericalatina.org.mx/egal12/Procesosambientales/Climatologia/16.pdf
Casado, A. & Picone, N. (2018). Aplicabilidad de los datos grillados para el análisis espaciotemporal de las precipitaciones, provincia de Buenos Aires (Argentina). Párrafos Geográficos, 17(1), 46-62. http://igeopat.org/parrafosgeograficos/images/RevistasPG/2018_17_1/29-3.pdf
Casado, A. L. & Campo, A. M. (2019). Extremos hidroclimáticos y recursos hídricos: estado de conocimiento en el suroeste bonaerense, Argentina. Cuadernos Geográficos, 58(1), 6-26. http://dx.doi.org/10.30827/cuadgeo.v58i1.6751
Cavalcante, R. B. L., da Silva Ferreira, D. B., Pontes, P. R. M., Tedeschi, R. G., da Costa, C. P. W. & de Souza, E. B. (2020). Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmospheric Research, 238, 104879. https://doi.org/10.1016/j.atmosres.2020.104879
de Moraes Cordeiro, A. L. & Blanco, C. J. C. (2021). Assessment of satellite products for filling rainfall data gaps in the Amazon region. Natural Resource Modeling, 34(2), e12298. https://doi.org/10.1111/nrm.12298
Fournier, F. (1960). Climat et erosion; la relation entre l’erosion du sol par l’eau et les precipitations atmospheriques. Paris: Presses universitaires de France.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A. & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21. https://doi.org/10.1038/sdata.2015.66
Gentili, J. O. & Gil, V. (2013). Variabilidad temporal de las precipitaciones en vertientes opuestas del Sistema de Ventania, Buenos Aires, Argentina. Revista Universitaria de Geografía, 22(2), 147-166. https://www.redalyc.org/pdf/3832/383239184008.pdf
Gil, V., Gentili, J., Campo, A. M., Jelinski, G. & Crisafulli, M. (2016). Evaluación del peligro potencial de crecidas en cuencas serranas. Sistema de Ventania, provincia de Buenos Aires. III Encuentro de Investigadores en Formación en Recursos Hídricos, Ezeiza, Argentina. https://www.ina.gov.ar/ifrh-2016/trabajos/IFRH_2016_paper_133.pdf
Gusmerotti, L. A., Posse, G., Oricchio, P. A., Rivadeneira, S. T. & Di Bella, C. M. (2023). Evaluation of Satellite-Based Precipitation Estimates and a Correction Methodology Through Weather Stations in Córdoba (Argentina). https://dx.doi.org/10.2139/ssrn.4374156
Hobouchian, M. P., Salio, P., Skabar, Y. G., Vila, D. & Garreaud, R. (2017). Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmospheric Research, 190, 43-54. https://doi.org/10.1016/j.atmosres.2017.02.006
Lovino, M. Á. (2015). Impacto ambiental de la variabilidad climática y los eventos extremos en la provincia de Santa Fe, en el contexto del cambio climático. http://hdl.handle.net/11185/707
Lúgaro, T. (2022). Caracterización climática de los vientos en Argentina a partir de datos observados y satelitales. https://anemoi.net.ar/static/img/Tesis_Lugaro.pdf
Marianetti, G. & Rivera, J. (2021). Riesgos asociados a eventos de precipitaciones intensas en la región oeste del Gran Mendoza, Argentina. ICU: Investigación, Ciencia y Universidad, 5(6), 31-42. https://doi.org/10.59872/icu.v5i6.369
Martín‐Vide, J. (2004). Spatial distribution of a daily precipitation concentration index in peninsular Spain. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(8), 959-971. https://doi.org/10.1002/joc.1030
Medina, F. D., Zossi, B. S., Bossolasco, A. & Elias, A. G. (2023). Performance of CHIRPS dataset for monthly and annual rainfall-indices in Northern Argentina. Atmospheric Research, 283, 106545. https://doi.org/10.1016/j.atmosres.2022.106545
Mianabadi, A. (2023). Evaluation of long-term satellite-based precipitation products for developing intensity-frequency (IF) curves of daily precipitation. Atmospheric Research, 286, 106667. https://doi.org/10.1016/j.atmosres.2023.106667
Olmo, M. E. (2023). Cambios futuros de la precipitación extrema en el sudeste de Sudamérica: modelado climático estadístico regional y patrones de circulación sinóptica. http://hdl.handle.net/20.500.12110/tesis_n7282_Olmo
Ombadi, M., Nguyen, P., Sorooshian, S. & Hsu, K. L. (2018). Developing intensity‐duration‐frequency (IDF) curves from satellite‐based precipitation: Methodology and evaluation. Water Resources Research, 54(10), 7752-7766. https://doi.org/10.1029/2018WR022929
Paredes-Trejo, F. J., Barbosa, H. A. & Kumar, T. L. (2017). Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. Journal of arid environments, 139, 26-40. https://doi.org/10.1016/j.jaridenv.2016.12.009
Prakash, S. (2019). Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. Journal of hydrology, 571, 50-59. https://doi.org/10.1016/j.jhydrol.2019.01.036
Rivera, J. A., Marianetti, G. & Hinrichs, S. (2018). Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmospheric Research, 213, 437-449. https://doi.org/10.1016/j.atmosres.2018.06.023
Salih, W., Epule, T. E., EL Khalki, E. L., Ouatiki, H., Erraki, S., Achli, S. & Chehbouni, A. (2023). A comprehensive assessment of satellite precipitation products over a semi-arid region: focus on extreme events. Natural Hazards, 1-29. https://doi.org/10.1007/s11069-023-06317-y
Saucedo, G. I., Kurtz, D. B. & Contreras, F. I. (2023). Validación de precipitaciones estimadas mediante satélites para dos estaciones de la provincia de Corrientes (República Argentina). Contribuciones Científicas, 35(1), 46-53. https://gaea.org.ar/contribuciones/CC_GAEA_35.pdf#page=47
Serrano‐Notivoli, R., Beguería, S., Saz, M. Á. & De Luis, M. (2018). Recent trends reveal decreasing intensity of daily precipitation in Spain. International Journal of Climatology, 38(11), 4211-4224. https://doi.org/10.1002/joc.5562
Volonté, A. (2017). Geomorfología fluvial aplicada al peligro de crecidas: cuenca del arroyo San Bernardo, sistema de Ventania, Argentina. http://repositoriodigital.uns.edu.ar/handle/123456789/3453
Wischmeier, W. H. (1959). A rainfall erosion index for a universal soil‐loss equation. Soil Science Society of America Journal, 23(3), 246-249. https://doi.org/10.2136/sssaj1959.03615995002300030027x
Xu, W., Zou, Y., Zhang, G. & Linderman, M. (2015). A comparison among spatial interpolation techniques for daily rainfall data in Sichuan Province, China. International Journal of Climatology, 35(10), 2898-2907. https://doi.org/10.1002/joc.4180
Zambrano, F., Wardlow, B., Tadesse, T., Lillo-Saavedra, M. & Lagos, O. (2017). Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmospheric Research, 186, 26-42. https://doi.org/10.1016/j.atmosres.2016.11.006
Zambrano-Bigiarini, M. (2022). Package hydroGOF. https://cran.r-project.org/web/packages/hydroGOF/index.html
Publicado
Cómo citar
Número
Sección
ARK
Licencia
Derechos de autor 2024 Boletin GeograficoLa aceptación de colaboraciones por parte de la revista implica la cesión no exclusiva de los derechos patrimoniales de los autores a favor del editor, quien permite la reutilización bajo Licencia Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Usted es libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
SinDerivadas — Si remezcla, transforma o crea a partir
El simple hecho de cambiar el formato nunca genera una obra derivada, no podrá distribuir el material modificado.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
La cesión de derechos no exclusivos implica también la autorización por parte de los autores para que el trabajo sea alojado en el repositorio institucional y difundido a través de las bases de datos que el editor considere apropiadas para su indización, con miras a incrementar la visibilidad de la revista y sus autores.
FORMULARIO DE CESIÓN DE DERECHOS DE AUTOR